首页> 外文OA文献 >Regulation of soil organic matter decomposition in permafrost-affected Siberian tundra soils - Impact of oxygen availability, freezing and thawing, temperature, and labile organic matter
【2h】

Regulation of soil organic matter decomposition in permafrost-affected Siberian tundra soils - Impact of oxygen availability, freezing and thawing, temperature, and labile organic matter

机译:受多年冻土影响的西伯利亚苔原土壤中土壤有机质分解的调节 - 氧气可利用性,冻融,温度和活性有机物的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The large amounts of soil organic matter (SOM) in permafrost-affected soils are prone to increased microbial decomposition in a warming climate. The environmental parameters regulating the production of carbon dioxide (CO2) and methane (CH4), however, are insufficiently understood to confidently predict the feedback of thawing permafrost to global warming. Therefore, the effects of oxygen availability, freezing and thawing, temperature, and labile organic matter (OM) additions on greenhouse gas production were studied in northeast Siberian polygonal tundra soils, including the seasonally thawed active layer and upper perennially frozen permafrost. Soils were incubated at constant temperatures of 1 °C, 4 °C, or 8 °C for up to 150 days. CO2 production in surface layers was three times higher than in the deeper soil. Under anaerobic conditions, SOM decomposition was 2–6 times lower than under aerobic conditions and more CO2 than CH4 was produced. CH4 contributed less than 2% to anaerobic decomposition in thawed permafrost but more than 20% in the active layer. A freeze-thaw cycle caused a short-lived pulse of CO2 production directly after re-thawing. Q10 values, calculated via the equal-carbon method, increased with soil depth from 3.4 ± 1.6 in surface layers to 6.1 ± 2.8 in the permafrost. The addition of plant-derived labile OM (13C-labelled Carex aquatilis leaves) resulted in an increase in SOM decomposition only in permafrost (positive priming). The current results indicate that the decomposition of permafrost SOM will be more strongly influenced by rising temperatures and the availability of labile OM than active layer material. The obtained data can be used to inform process-based models to improve simulations of greenhouse gas production potentials from thawing permafrost landscapes.
机译:受多年冻土影响的土壤中大量的土壤有机质(SOM)在气候变暖的情况下易于增加微生物的分解。然而,对于调节二氧化碳(CO2)和甲烷(CH4)产生的环境参数了解不足,无法自信地预测永久冻土解冻对全球变暖的反馈。因此,在东北西伯利亚多边形苔原土壤中研究了氧气供应,冻结和解冻,温度和不稳定有机质(OM)的添加对温室气体产生的影响,包括季节性融化的活性层和多年生上部冻结的多年冻土。将土壤在1°C,4°C或8°C的恒温下孵育最多150天。表层的二氧化碳产量是深层土壤的三倍。在厌氧条件下,SOM分解比在有氧条件下低2-6倍,并且产生的CO2比CH4多。在融化的永久冻土中,CH4对厌氧分解的贡献少于2%,但在活性层中的贡献超过20%。在重新融化之后,冻融循环直接导致了短暂的CO2产生脉冲。通过等碳法计算的Q10值随着土壤深度从表层的3.4±1.6增加到永久冻土的6.1±2.8。仅在多年冻土中(阳性启动),添加植物来源的不稳定OM(13C标记的Carex水草叶)会导致SOM分解增加。目前的结果表明,与活性层材料相比,永久冻土SOM的分解将受到温度升高和不稳定OM可用性的更大影响。所获得的数据可用于为基于过程的模型提供信息,以改善对多年冻土景观解冻后温室气体生产潜力的模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号